\[E = \frac{0.02^{n+1}}{(n+1) \cdot (1 + \theta)^{n+1}} \leq \frac{0.02^{n+1}}{n+1} \leq 10^{-4} \]

\[R_{n,a}(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} \cdot (x-a)^{n+1} \text{ para algún } \theta \in (a, x) \]

\[E = \left| R_{n,0}(x) \right| = \left| \frac{f^{(n+1)}(\theta)}{(n+1)!} \cdot (x-0)^{n+1} \right| \text{ con } \theta \in (0, x) \]

Si \[n = 1 \rightarrow \frac{0.02^2}{2} = \frac{(2 \cdot 10^{-2})^2}{2} = 2 \cdot 10^{-4} < 10^{-4} \]

Si \[n = 2 \rightarrow \frac{0.02^2}{3} = \frac{(2 \cdot 10^{-2})^2}{3} = \frac{8 \cdot 10^{-6}}{3} < 10^{-4} \]

Luego basta calcular el polinomio para \(n = 2 \)

\[f(x) \approx f(0) + f'(0) \cdot (x-0) + f''(0) \cdot (x-0)^2 \rightarrow \log(1 + x) \approx 0 + \frac{1}{1!} \cdot x = \frac{1}{2!} \cdot x^2 \]

Tomamos ahora \(x = 0.02 \). Entonces:

\[\log(1.02) \approx 0 + \frac{1}{1!} \cdot 0.02 - \frac{1}{2!} \cdot (0.02)^2 = 0.02 - \frac{0.0004}{2} = 0.02 - 0.0002 = 0.0198 \]

Bibliografía

- Elementos de la Teoría de Funciones, J. Rey Pastor